AWS Lambda with Quarkus REST, Undertow, or Reactive Routes
With Quarkus you can deploy your favorite Java HTTP frameworks as AWS Lambda’s using either the AWS Gateway HTTP API or AWS Gateway REST API. This means that you can deploy your microservices written with Quarkus REST (our Jakarta REST implementation), Undertow (servlet), Reactive Routes, Funqy HTTP or any other Quarkus HTTP framework as an AWS Lambda.
You should only use single HTTP framework together with AWS Lambda extension to avoid unexpected conflicts and errors. |
You can deploy your Lambda as a pure Java jar, or you can compile your project to a native image and deploy that for a smaller memory footprint and startup time. Our integration also generates SAM deployment files that can be consumed by Amazon’s SAM framework.
Quarkus has a different extension for each Gateway API. The HTTP Gateway API is implemented within the quarkus-amazon-lambda-http
extension.
The REST Gateway API is implemented within the quarkus-amazon-lambda-rest
extension. If you are confused on which Gateway product to use,
Amazon has a great guide to help you navigate this decision.
Like most Quarkus extensions, the Quarkus AWS Lambda HTTP/REST extensions support Live Coding.
This technology is considered preview. In preview, backward compatibility and presence in the ecosystem is not guaranteed. Specific improvements might require changing configuration or APIs, and plans to become stable are under way. Feedback is welcome on our mailing list or as issues in our GitHub issue tracker. For a full list of possible statuses, check our FAQ entry. |
Requisitos previos
To complete this guide, you need:
-
Roughly 30 minutes
-
An IDE
-
JDK 17+ installed with
JAVA_HOME
configured appropriately -
Apache Maven 3.9.8
-
Optionally the Quarkus CLI if you want to use it
-
Optionally Mandrel or GraalVM installed and configured appropriately if you want to build a native executable (or Docker if you use a native container build)
Primeros pasos
This guide walks you through generating an example Java project via a Maven archetype. Later on, it walks through the structure of the project so you can adapt any existing projects you have to use AWS Lambda.
Installing AWS bits
Installing all the AWS bits is probably the most difficult thing about this guide. Make sure that you follow all the steps for installing AWS SAM CLI.
Creación del proyecto de Maven
Create the Quarkus AWS Lambda Maven project using our Maven Archetype.
If you want to use the AWS Gateway HTTP API, generate your project with this script:
mvn archetype:generate \
-DarchetypeGroupId=io.quarkus \
-DarchetypeArtifactId=quarkus-amazon-lambda-http-archetype \
-DarchetypeVersion=3.14.4
If you want to use the AWS Gateway REST API, generate your project with this script:
mvn archetype:generate \
-DarchetypeGroupId=io.quarkus \
-DarchetypeArtifactId=quarkus-amazon-lambda-rest-archetype \
-DarchetypeVersion=3.14.4
Build and Deploy
Build the project:
quarkus build
./mvnw install
This will compile the code and run the unit tests included within the generated project. Unit testing is the same as any other Java project and does not require running on Amazon. Quarkus dev mode is also available with this extension.
If you want to build a native executable, make sure you have GraalVM installed correctly and just add a native
property
to the build
quarkus build --native
./mvnw install -Dnative
If you are building on a non-Linux system, you will need to also pass in a property instructing quarkus to use a Docker build as Amazon
Lambda requires Linux binaries. You can do this by passing -Dquarkus.native.container-build=true to your build command.
This requires you to have Docker installed locally, however.
|
quarkus build --native --no-tests -Dquarkus.native.container-build=true
# The --no-tests flag is required only on Windows and macOS.
./mvnw install -Dnative -DskipTests -Dquarkus.native.container-build=true
Extra Build Generated Files
After you run the build, there are a few extra files generated by the Quarkus lambda extension you are using. These files
are in the build directory: target/
for Maven, build/
for Gradle.
-
function.zip
- lambda deployment file -
sam.jvm.yaml
- sam cli deployment script -
sam.native.yaml
- sam cli deployment script for native
Live Coding and Simulating AWS Lambda Environment Locally
In dev and test mode, Quarkus will start a mock AWS Lambda event server that will convert HTTP requests to the corresponding API Gateway event types and post them to the underlying Quarkus HTTP lambda environment for processing. This simulates the AWS Lambda environment as much as possible locally without requiring tools like Docker and SAM CLI.
When using Quarkus Dev Mode just invoke HTTP requests on http://localhost:8080
as you normally would when testing your REST endpoints. This request will hit the Mock Event Server and will
be converted to the API Gateway json message that is consumed by the Quarkus Lambda Poll loop.
For testing, Quarkus starts up a separate Mock Event server under port 8081. The default port for Rest Assured is automatically set to 8081 by Quarkus, so you don’t have to worry about setting this up.
If you want to simulate more complex
API Gateway events in your tests, then manually do an HTTP POST to http://localhost:8080/_lambda_
(port 8081 in test mode) with
the raw API Gateway json events. These events will be placed directly on the Quarkus Lambda poll loop
for processing. Here’s an example of that:
import static io.restassured.RestAssured.given;
import static org.hamcrest.CoreMatchers.equalTo;
import com.amazonaws.services.lambda.runtime.events.APIGatewayV2HTTPEvent;
import io.quarkus.test.junit.QuarkusTest;
@QuarkusTest
public class AmazonLambdaSimpleTestCase {
@Test
public void testJaxrsCognitoJWTSecurityContext() throws Exception {
APIGatewayV2HTTPEvent request = request("/security/username");
request.getRequestContext().setAuthorizer(new APIGatewayV2HTTPEvent.RequestContext.Authorizer());
request.getRequestContext().getAuthorizer().setJwt(new APIGatewayV2HTTPEvent.RequestContext.Authorizer.JWT());
request.getRequestContext().getAuthorizer().getJwt().setClaims(new HashMap<>());
request.getRequestContext().getAuthorizer().getJwt().getClaims().put("cognito:username", "Bill");
given()
.contentType("application/json")
.accept("application/json")
.body(request)
.when()
.post("/_lambda_")
.then()
.statusCode(200)
.body("body", equalTo("Bill"));
}
The above example simulates sending a Cognito principal with an HTTP request to your HTTP Lambda.
If you want to hand code raw events for the AWS HTTP API, the AWS Lambda library has the request event type which is
com.amazonaws.services.lambda.runtime.events.APIGatewayV2HTTPEvent
and the response event type
of com.amazonaws.services.lambda.runtime.events.APIGatewayV2HTTPResponse
. This corresponds
to the quarkus-amazon-lambda-http
extension and the AWS HTTP API.
If you want to hand code raw events for the AWS REST API, Quarkus has its own implementation: io.quarkus.amazon.lambda.http.model.AwsProxyRequest
and io.quarkus.amazon.lambda.http.model.AwsProxyResponse
. This corresponds
to quarkus-amazon-lambda-rest
extension and the AWS REST API.
The mock event server is also started for @QuarkusIntegrationTest
tests so will work
with native binaries too. All this provides similar functionality to the SAM CLI local testing, without the overhead of Docker.
Finally, if port 8080 or port 8081 is not available on your computer, you can modify the dev and test mode ports with application.properties
quarkus.lambda.mock-event-server.dev-port=8082
quarkus.lambda.mock-event-server.test-port=8083
A port value of zero will result in a randomly assigned port.
To turn off the mock event server:
quarkus.lambda.mock-event-server.enabled=false
Simulate AWS Lambda Deployment with SAM CLI
The AWS SAM CLI allows you to run your lambda’s locally on your laptop in a simulated Lambda environment. This requires Docker to be installed. After you have built your Maven project, execute this command:
sam local start-api --template target/sam.jvm.yaml
This will start a Docker container that mimics Amazon’s Lambda’s deployment environment. Once the environment is started you can invoke the example lambda in your browser by going to:
In the console you’ll see startup messages from the lambda. This particular deployment starts a JVM and loads your lambda as pure Java.
Deploy to AWS
sam deploy -t target/sam.jvm.yaml -g
Answer all the questions and your lambda will be deployed and the necessary hooks to the API Gateway will be set up. If everything deploys successfully, the root URL of your microservice will be output to the console. Something like this:
Key LambdaHttpApi Description URL for application Value https://234asdf234as.execute-api.us-east-1.amazonaws.com/
The Value
attribute is the root URL for your lambda. Copy it to your browser and add hello
at the end.
Responses for binary types will be automatically encoded with base64. This is different from the behavior using
quarkus:dev which will return the raw bytes. Amazon’s API has additional restrictions requiring the base64 encoding.
In general, client code will automatically handle this encoding but in certain custom situations, you should be aware
you may need to manually manage that encoding.
|
Deploying a native executable
To deploy a native executable, you must build it with GraalVM.
quarkus build --native --no-tests -Dquarkus.native.container-build=true
# The --no-tests flag is required only on Windows and macOS.
./mvnw install -Dnative -DskipTests -Dquarkus.native.container-build=true
You can then test the executable locally with sam local
sam local start-api --template target/sam.native.yaml
To deploy to AWS Lambda:
sam deploy -t target/sam.native.yaml -g
Examine the POM
There is nothing special about the POM other than the inclusion of the quarkus-amazon-lambda-http
extension
(if you are deploying an AWS Gateway HTTP API) or the quarkus-amazon-lambda-rest
extension (if you are deploying an AWS Gateway REST API).
These extensions automatically generate everything you might need for your lambda deployment.
Also, at least in the generated Maven archetype pom.xml
, the quarkus-rest
, quarkus-reactive-routes
, and quarkus-undertow
dependencies are all optional. Pick which HTTP framework(s) you want to use (Jakarta REST, Reactive Routes, and/or Servlet) and
remove the other dependencies to shrink your deployment.
Examine sam.yaml
The sam.yaml
syntax is beyond the scope of this document. There’s a couple of things that must be highlighted just in case you are
going to craft your own custom sam.yaml
deployment files.
The first thing to note is that for pure Java lambda deployments require a specific handler class. Do not change the Lambda handler name.
Properties:
Handler: io.quarkus.amazon.lambda.runtime.QuarkusStreamHandler::handleRequest
Runtime: java17
This handler is a bridge between the lambda runtime and the Quarkus HTTP framework you are using (Jakarta REST, Servlet, etc.)
If you want to go native, there’s an environment variable that must be set for native GraalVM deployments. If you look at sam.native.yaml
you’ll see this:
Environment:
Variables:
DISABLE_SIGNAL_HANDLERS: true
This environment variable resolves some incompatibilities between Quarkus and the AWS Lambda Custom Runtime environment.
Finally, there is one specific thing for AWS Gateway REST API deployments.
That API assumes that HTTP response bodies are text unless you explicitly tell it which media types are
binary through configuration. To make things easier, the Quarkus extension forces a binary (base 64) encoding of all
HTTP response messages and the sam.yaml
file must configure the API Gateway to assume all media types are binary:
Globals:
Api:
EndpointConfiguration: REGIONAL
BinaryMediaTypes:
- "*/*"
Injectable AWS Context Variables
If you are using Quarkus REST and Jakarta REST, you can inject various AWS Context variables into your Jakarta REST resource classes
using the Jakarta REST @Context
annotation or anywhere else with the CDI @Inject
annotation.
For the AWS HTTP API you can inject the AWS variables com.amazonaws.services.lambda.runtime.Context
and
com.amazonaws.services.lambda.runtime.events.APIGatewayV2HTTPEvent
. Here is an example:
import jakarta.ws.rs.core.Context;
import com.amazonaws.services.lambda.runtime.events.APIGatewayV2HTTPEvent;
@Path("/myresource")
public class MyResource {
@GET
public String ctx(@Context com.amazonaws.services.lambda.runtime.Context ctx) { }
@GET
public String event(@Context APIGatewayV2HTTPEvent event) { }
@GET
public String requestContext(@Context APIGatewayV2HTTPEvent.RequestContext req) { }
}
For the AWS REST API you can inject the AWS variables com.amazonaws.services.lambda.runtime.Context
and
io.quarkus.amazon.lambda.http.model.AwsProxyRequestContext
. Here is an example:
import jakarta.ws.rs.core.Context;
import io.quarkus.amazon.lambda.http.model.AwsProxyRequestContext;
import io.quarkus.amazon.lambda.http.model.AwsProxyRequest;
@Path("/myresource")
public class MyResource {
@GET
public String ctx(@Context com.amazonaws.services.lambda.runtime.Context ctx) { }
@GET
public String reqContext(@Context AwsProxyRequestContext req) { }
@GET
public String req(@Context AwsProxyRequest req) { }
}
Tracing with AWS XRay and GraalVM
If you are building native images, and want to use AWS X-Ray Tracing with your lambda
you will need to include quarkus-amazon-lambda-xray
as a dependency in your pom. The AWS X-Ray
library is not fully compatible with GraalVM, so we had to do some integration work to make this work.
Security Integration
When you invoke an HTTP request on the API Gateway, the Gateway turns that HTTP request into a JSON event document that is forwarded to a Quarkus Lambda. The Quarkus Lambda parses this json and converts in into an internal representation of an HTTP request that can be consumed by any HTTP framework Quarkus supports (Jakarta REST, servlet, Reactive Routes).
API Gateway supports many ways to securely invoke on your HTTP endpoints that are backed by Lambda and Quarkus.
If you enable it, Quarkus will automatically parse relevant parts of the event json document
and look for security based metadata and register a java.security.Principal
internally that can be looked up in Jakarta REST
by injecting a jakarta.ws.rs.core.SecurityContext
, via HttpServletRequest.getUserPrincipal()
in servlet, and RouteContext.user()
in Reactive Routes.
If you want more security information, the Principal
object can be typecast to
a class that will give you more information.
Para activar esta función de seguridad, añada esto a su archivo application.properties
:
quarkus.lambda-http.enable-security=true
Here’s how its mapped:
Auth Type | Principal Class | Json path of Principal Name |
---|---|---|
Cognito JWT |
|
|
IAM |
|
|
Custom Lambda |
|
|
Auth Type | Principal Class | Json path of Principal Name |
---|---|---|
Cognito |
|
|
IAM |
|
|
Custom Lambda |
|
|
If the cognito:groups
claim is present, then Quarkus will extract and map those groups
to Quarkus roles which can then be used in authorization with annotations like @RolesAllowed
.
If you do not want to map cognito:groups
to Quarkus roles, then you must explicitly disable it
in configuration:
quarkus.lambda-http.map-cognito-to-roles=false
You can also specify a different Cognito claim to extract roles from:
quarkus.lambda-http.cognito-role-claim=cognito:roles
By default, it expects roles in a space delimited list enclosed in brackets i.e. [ user admin ]
.
You can specify the regular expression to use to find individual roles in the claim string too:
quarkus.lambda-http.cognito-claim-matcher=[^\[\] \t]+
Custom Security Integration
The default support for AWS security only maps the principal name to Quarkus security
APIs and does nothing to map claims or roles or permissions. You have full control on
how security metadata in the lambda HTTP event is mapped to Quarkus Security APIs using
implementations of the io.quarkus.amazon.lambda.http.LambdaIdentityProvider
interface. By implementing this interface, you can do things like define role mappings for your principal
or publish additional attributes provided by IAM or Cognito or your Custom Lambda security integration.
quarkus-amazon-lambda-http
package io.quarkus.amazon.lambda.http;
/**
* Helper interface that removes some boilerplate for creating
* an IdentityProvider that processes APIGatewayV2HTTPEvent
*/
public interface LambdaIdentityProvider extends IdentityProvider<LambdaAuthenticationRequest> {
@Override
default public Class<LambdaAuthenticationRequest> getRequestType() {
return LambdaAuthenticationRequest.class;
}
@Override
default Uni<SecurityIdentity> authenticate(LambdaAuthenticationRequest request, AuthenticationRequestContext context) {
APIGatewayV2HTTPEvent event = request.getEvent();
SecurityIdentity identity = authenticate(event);
if (identity == null) {
return Uni.createFrom().optional(Optional.empty());
}
return Uni.createFrom().item(identity);
}
/**
* You must override this method unless you directly override
* IdentityProvider.authenticate
*
* @param event
* @return
*/
default SecurityIdentity authenticate(APIGatewayV2HTTPEvent event) {
throw new IllegalStateException("You must override this method or IdentityProvider.authenticate");
}
}
For HTTP, the important method to override is LambdaIdentityProvider.authenticate(APIGatewayV2HTTPEvent event)
. From this
you will allocate a SecurityIdentity based on how you want to map security data from APIGatewayV2HTTPEvent
quarkus-amazon-lambda-rest
package io.quarkus.amazon.lambda.http;
import java.util.Optional;
import com.amazonaws.services.lambda.runtime.events.APIGatewayV2HTTPEvent;
import io.quarkus.amazon.lambda.http.model.AwsProxyRequest;
import io.quarkus.security.identity.AuthenticationRequestContext;
import io.quarkus.security.identity.IdentityProvider;
import io.quarkus.security.identity.SecurityIdentity;
import io.smallrye.mutiny.Uni;
/**
* Helper interface that removes some boilerplate for creating
* an IdentityProvider that processes APIGatewayV2HTTPEvent
*/
public interface LambdaIdentityProvider extends IdentityProvider<LambdaAuthenticationRequest> {
...
/**
* You must override this method unless you directly override
* IdentityProvider.authenticate
*
* @param event
* @return
*/
default SecurityIdentity authenticate(AwsProxyRequest event) {
throw new IllegalStateException("You must override this method or IdentityProvider.authenticate");
}
}
For REST, the important method to override is LambdaIdentityProvider.authenticate(AwsProxyRequest event)
. From this
you will allocate a SecurityIdentity based on how you want to map security data from AwsProxyRequest
.
Su proveedor implementado debe ser un bean CDI. He aquí un ejemplo:
package org.acme;
import java.security.Principal;
import jakarta.enterprise.context.ApplicationScoped;
import com.amazonaws.services.lambda.runtime.events.APIGatewayV2HTTPEvent;
import io.quarkus.amazon.lambda.http.LambdaIdentityProvider;
import io.quarkus.security.identity.SecurityIdentity;
import io.quarkus.security.runtime.QuarkusPrincipal;
import io.quarkus.security.runtime.QuarkusSecurityIdentity;
@ApplicationScoped
public class CustomSecurityProvider implements LambdaIdentityProvider {
@Override
public SecurityIdentity authenticate(APIGatewayV2HTTPEvent event) {
if (event.getHeaders() == null || !event.getHeaders().containsKey("x-user"))
return null;
Principal principal = new QuarkusPrincipal(event.getHeaders().get("x-user"));
QuarkusSecurityIdentity.Builder builder = QuarkusSecurityIdentity.builder();
builder.setPrincipal(principal);
return builder.build();
}
}
Here’s the same example, but with the AWS Gateway REST API:
package org.acme;
import java.security.Principal;
import jakarta.enterprise.context.ApplicationScoped;
import io.quarkus.amazon.lambda.http.model.AwsProxyRequest;
import io.quarkus.amazon.lambda.http.LambdaIdentityProvider;
import io.quarkus.security.identity.SecurityIdentity;
import io.quarkus.security.runtime.QuarkusPrincipal;
import io.quarkus.security.runtime.QuarkusSecurityIdentity;
@ApplicationScoped
public class CustomSecurityProvider implements LambdaIdentityProvider {
@Override
public SecurityIdentity authenticate(AwsProxyRequest event) {
if (event.getMultiValueHeaders() == null || !event.getMultiValueHeaders().containsKey("x-user"))
return null;
Principal principal = new QuarkusPrincipal(event.getMultiValueHeaders().getFirst("x-user"));
QuarkusSecurityIdentity.Builder builder = QuarkusSecurityIdentity.builder();
builder.setPrincipal(principal);
return builder.build();
}
}
Quarkus should automatically discover this implementation and use it instead of the default implementation discussed earlier.
Simple SAM Local Principal
If you are testing your application with sam local
you can
hardcode a principal name to use when your application runs by setting
the QUARKUS_AWS_LAMBDA_FORCE_USER_NAME
environment variable
SnapStart
To optimize your application for Lambda SnapStart, check the SnapStart Configuration Documentation.