Getting Started to Quarkus Messaging with RabbitMQ
This guide demonstrates how your Quarkus application can utilize Quarkus Messaging to interact with RabbitMQ.
This technology is considered preview. In preview, backward compatibility and presence in the ecosystem is not guaranteed. Specific improvements might require changing configuration or APIs, and plans to become stable are under way. Feedback is welcome on our mailing list or as issues in our GitHub issue tracker. For a full list of possible statuses, check our FAQ entry. |
Requisitos previos
To complete this guide, you need:
-
Roughly 15 minutes
-
An IDE
-
JDK 17+ installed with
JAVA_HOME
configured appropriately -
Apache Maven 3.9.9
-
Docker and Docker Compose or Podman, and Docker Compose
-
Optionally the Quarkus CLI if you want to use it
-
Optionally Mandrel or GraalVM installed and configured appropriately if you want to build a native executable (or Docker if you use a native container build)
Arquitectura
In this guide, we are going to develop two applications communicating with a RabbitMQ broker. The first application sends a quote request to the RabbitMQ quote requests exchange and consumes messages from the quote queue. The second application receives the quote request and sends a quote back.
The first application, the producer
, will let the user request some quotes over an HTTP endpoint.
For each quote request, a random identifier is generated and returned to the user, to put the quote request on pending.
At the same time the generated request id is sent to the quote-requests
exchange.
The second application, the processor
, in turn, will read from the quote-requests
queue put a random price to the quote, and send it to an exchange named quotes
.
Por último, el producer
leerá las cotizaciones y las enviará al navegador mediante eventos enviados por el servidor. Por tanto, el usuario verá el precio de la cotización actualizado de pendiente al precio recibido en tiempo real.
Solución
Le recomendamos que siga las instrucciones de las siguientes secciones y cree las aplicaciones paso a paso. No obstante, puede ir directamente al ejemplo completado.
Clone el repositorio Git: git clone https://github.com/quarkusio/quarkus-quickstarts.git
o descargue un archivo.
The solution is located in the rabbitmq-quickstart
directory.
Creación del proyecto Maven
En primer lugar, tenemos que crear dos proyectos: el productor y el procesador.
Para crear el proyecto productor, en un terminal ejecute:
For Windows users:
-
If using cmd, (don’t use backward slash
\
and put everything on the same line) -
If using Powershell, wrap
-D
parameters in double quotes e.g."-DprojectArtifactId=rabbitmq-quickstart-producer"
Este comando crea la estructura del proyecto y selecciona las dos extensiones de Quarkus que vamos a utilizar:
-
The Reactive Messaging RabbitMQ connector
-
Quarkus REST (antes RESTEasy Reactive) y su soporte Jackson para manejar cargas útiles JSON
If you already have your Quarkus project configured, you can add the CLI
Maven
Gradle
This will add the following to your pom.xml
build.gradle
|
Para crear el proyecto del procesador, desde el mismo directorio, ejecute:
For Windows users:
-
If using cmd, (don’t use backward slash
\
and put everything on the same line) -
If using Powershell, wrap
-D
parameters in double quotes e.g."-DprojectArtifactId=rabbitmq-quickstart-processor"
En ese momento deberías tener la siguiente estructura:
.
├── rabbitmq-quickstart-processor
│ ├── README.md
│ ├── mvnw
│ ├── mvnw.cmd
│ ├── pom.xml
│ └── src
│ └── main
│ ├── docker
│ ├── java
│ └── resources
│ └── application.properties
└── rabbitmq-quickstart-producer
├── README.md
├── mvnw
├── mvnw.cmd
├── pom.xml
└── src
└── main
├── docker
├── java
└── resources
└── application.properties
Abra los dos proyectos en su IDE favorito.
El objeto Cotización
The Quote
class will be used in both producer
and processor
projects.
For the sake of simplicity we will duplicate the class.
In both projects, create the src/main/java/org/acme/rabbitmq/model/Quote.java
file, with the following content:
package org.acme.rabbitmq.model;
import io.quarkus.runtime.annotations.RegisterForReflection;
@RegisterForReflection
public class Quote {
public String id;
public int price;
/**
* Default constructor required for Jackson serializer
*/
public Quote() { }
public Quote(String id, int price) {
this.id = id;
this.price = price;
}
@Override
public String toString() {
return "Quote{" +
"id='" + id + '\'' +
", price=" + price +
'}';
}
}
JSON representation of Quote
objects will be used in messages sent to the RabbitMQ queues
and also in the server-sent events sent to browser clients.
Quarkus has built-in capabilities to deal with JSON RabbitMQ messages.
@RegisterForReflection
La anotación |
Envío de solicitud de presupuesto
Inside the producer
project locate the generated src/main/java/org/acme/rabbitmq/producer/QuotesResource.java
file, and update the content to be:
package org.acme.rabbitmq.producer;
import java.util.UUID;
import jakarta.ws.rs.GET;
import jakarta.ws.rs.POST;
import jakarta.ws.rs.Path;
import jakarta.ws.rs.Produces;
import jakarta.ws.rs.core.MediaType;
import org.acme.rabbitmq.model.Quote;
import org.eclipse.microprofile.reactive.messaging.Channel;
import org.eclipse.microprofile.reactive.messaging.Emitter;
import io.smallrye.mutiny.Multi;
@Path("/quotes")
public class QuotesResource {
@Channel("quote-requests") Emitter<String> quoteRequestEmitter; (1)
/**
* Endpoint to generate a new quote request id and send it to "quote-requests" channel (which
* maps to the "quote-requests" RabbitMQ exchange) using the emitter.
*/
@POST
@Path("/request")
@Produces(MediaType.TEXT_PLAIN)
public String createRequest() {
UUID uuid = UUID.randomUUID();
quoteRequestEmitter.send(uuid.toString()); (2)
return uuid.toString();
}
}
1 | Inyectar una Mensajería Reactiva Emitter para enviar mensajes al canal quote-requests . |
2 | On a post request, generate a random UUID and send it to the RabbitMQ queue using the emitter. |
This channel is mapped to a RabbitMQ exchange using the configuration we will add to the application.properties
file.
Open the src/main/resource/application.properties
file and add:
# Configure the outgoing RabbitMQ exchange `quote-requests`
mp.messaging.outgoing.quote-requests.connector=smallrye-rabbitmq
mp.messaging.outgoing.quote-requests.exchange.name=quote-requests
All we need to specify is the smallrye-rabbitmq
connector.
By default, reactive messaging maps the channel name quote-requests
to the same RabbitMQ exchange name.
Tramitación de solicitudes de quota
Now let’s consume the quote request and give out a price.
Inside the processor
project, locate the src/main/java/org/acme/rabbitmq/processor/QuoteProcessor.java
file and add the following:
package org.acme.rabbitmq.processor;
import java.util.Random;
import jakarta.enterprise.context.ApplicationScoped;
import org.acme.rabbitmq.model.Quote;
import org.eclipse.microprofile.reactive.messaging.Incoming;
import org.eclipse.microprofile.reactive.messaging.Outgoing;
import io.smallrye.reactive.messaging.annotations.Blocking;
/**
* A bean consuming data from the "quote-requests" RabbitMQ queue and giving out a random quote.
* The result is pushed to the "quotes" RabbitMQ exchange.
*/
@ApplicationScoped
public class QuoteProcessor {
private Random random = new Random();
@Incoming("requests") (1)
@Outgoing("quotes") (2)
@Blocking (3)
public Quote process(String quoteRequest) throws InterruptedException {
// simulate some hard-working task
Thread.sleep(1000);
return new Quote(quoteRequest, random.nextInt(100));
}
}
1 | Indica que el método consume los elementos del canal requests |
2 | Indica que los objetos devueltos por el método se envían al canal quotes |
3 | Indica que el procesamiento está bloqueando y no puede ser ejecutado en el hilo de la llamada. |
The process
method is called for every RabbitMQ message from the quote-requests
queue, and will send a Quote
object to the quotes
exchange.
As with the previous example we need to configure the connectors in the application.properties
file.
Open the src/main/resources/application.properties
file and add:
# Configure the incoming RabbitMQ queue `quote-requests`
mp.messaging.incoming.requests.connector=smallrye-rabbitmq
mp.messaging.incoming.requests.queue.name=quote-requests
mp.messaging.incoming.requests.exchange.name=quote-requests
# Configure the outgoing RabbitMQ exchange `quotes`
mp.messaging.outgoing.quotes.connector=smallrye-rabbitmq
mp.messaging.outgoing.quotes.exchange.name=quotes
Note that in this case we have one incoming and one outgoing connector configuration, each one distinctly named. The configuration properties are structured as follows:
mp.messaging.[outgoing|incoming].{channel-name}.property=value
The channel-name
segment must match the value set in the @Incoming
and @Outgoing
annotation:
-
quote-requests
→ RabbitMQ queue from which we read the quote requests -
quotes
→ RabbitMQ exchange in which we write the quotes
Recepción de presupuestos
Volvamos a nuestro proyecto producer
. Modifiquemos el QuotesResource
para consumir cotizaciones, vinculémoslo a un endpoint HTTP para enviar eventos a los clientes:
import io.smallrye.mutiny.Multi;
//...
@Channel("quotes") Multi<Quote> quotes; (1)
/**
* Endpoint retrieving the "quotes" queue and sending the items to a server sent event.
*/
@GET
@Produces(MediaType.SERVER_SENT_EVENTS) (2)
public Multi<Quote> stream() {
return quotes; (3)
}
1 | Inyecta el canal quotes utilizando el calificador @Channel |
2 | Indica que el contenido se envía utilizando Server Sent Events |
3 | Devuelve el flujo (Reactive Stream) |
Again we need to configure the incoming quotes
channel inside producer
project.
Add the following inside application.properties
file:
# Configure the outgoing `quote-requests` queue
mp.messaging.outgoing.quote-requests.connector=smallrye-rabbitmq
# Configure the incoming `quotes` queue
mp.messaging.incoming.quotes.connector=smallrye-rabbitmq
La página HTML
El toque final, la página HTML que lee los precios convertidos usando SSE.
Cree dentro del proyecto producer
el archivo src/main/resources/META-INF/resources/quotes.html
, con el siguiente contenido:
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>Quotes</title>
<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/libs/patternfly/3.24.0/css/patternfly.min.css">
<link rel="stylesheet" type="text/css"
href="https://cdnjs.cloudflare.com/ajax/libs/patternfly/3.24.0/css/patternfly-additions.min.css">
</head>
<body>
<div class="container">
<div class="card">
<div class="card-body">
<h2 class="card-title">Quotes</h2>
<button class="btn btn-info" id="request-quote">Request Quote</button>
<div class="quotes"></div>
</div>
</div>
</div>
</body>
<script src="https://code.jquery.com/jquery-3.6.0.min.js"></script>
<script>
$("#request-quote").click((event) => {
fetch("/quotes/request", {method: "POST"})
.then(res => res.text())
.then(qid => {
var row = $(`<h4 class='col-md-12' id='${qid}'>Quote # <i>${qid}</i> | <strong>Pending</strong></h4>`);
$(".quotes").append(row);
});
});
var source = new EventSource("/quotes");
source.onmessage = (event) => {
var json = JSON.parse(event.data);
$(`#${json.id}`).html(function(index, html) {
return html.replace("Pending", `\$\xA0${json.price}`);
});
};
</script>
</html>
Aquí no hay nada espectacular. En cada cita recibida, actualiza la página.
Ponerlo en marcha
Sólo tienes que ejecutar ambas aplicaciones utilizando:
mvn -f rabbitmq-quickstart-producer quarkus:dev
Y, en una terminal separada:
mvn -f rabbitmq-quickstart-processor quarkus:dev
Quarkus starts a RabbitMQ broker automatically, configures the application and shares the broker instance between different applications. See Dev Services for RabbitMQ for more details.
Abra http://localhost:8080/quotes.html
en su navegador y solicite algunos presupuestos haciendo clic en el botón.
Ejecución en modo JVM o nativo
When not running in dev or test mode, you will need to start your RabbitMQ broker.
You can follow the instructions from the RabbitMQ Docker website or create a docker-compose.yaml
file with the following content:
version: '2'
services:
rabbit:
image: rabbitmq:3.12-management
ports:
- "5672:5672"
networks:
- rabbitmq-quickstart-network
producer:
image: quarkus-quickstarts/rabbitmq-quickstart-producer:1.0-${QUARKUS_MODE:-jvm}
build:
context: rabbitmq-quickstart-producer
dockerfile: src/main/docker/Dockerfile.${QUARKUS_MODE:-jvm}
environment:
RABBITMQ_HOST: rabbit
RABBITMQ_PORT: 5672
ports:
- "8080:8080"
networks:
- rabbitmq-quickstart-network
processor:
image: quarkus-quickstarts/rabbitmq-quickstart-processor:1.0-${QUARKUS_MODE:-jvm}
build:
context: rabbitmq-quickstart-processor
dockerfile: src/main/docker/Dockerfile.${QUARKUS_MODE:-jvm}
environment:
RABBITMQ_HOST: rabbit
RABBITMQ_PORT: 5672
networks:
- rabbitmq-quickstart-network
networks:
rabbitmq-quickstart-network:
name: rabbitmq-quickstart
Note how the RabbitMQ broker location is configured.
The rabbitmq-host
and rabbitmq-port
(AMQP_HOST
and AMQP_PORT
environment variables) properties configure location.
En primer lugar, asegúrese de que ha detenido las aplicaciones, y construya ambas aplicaciones en modo JVM con:
mvn -f rabbitmq-quickstart-producer clean package
mvn -f rabbitmq-quickstart-processor clean package
Una vez empaquetado, ejecute docker compose up --build
. La interfaz de usuario se expone en http://localhost:8080/quotes.html .
Para ejecutar tus aplicaciones como nativas, primero tenemos que construir los ejecutables nativos:
mvn -f rabbitmq-quickstart-producer package -Dnative -Dquarkus.native.container-build=true
mvn -f rabbitmq-quickstart-processor package -Dnative -Dquarkus.native.container-build=true
El -Dquarkus.native.container-build=true
instruye a Quarkus para construir ejecutables nativos de Linux 64bits, que pueden ejecutarse dentro de contenedores. A continuación, ejecute el sistema utilizando:
export QUARKUS_MODE=native
docker compose up --build
Como antes, la interfaz de usuario está expuesta en http://localhost:8080/quotes.html
Ir más allá
This guide has shown how you can interact with RabbitMQ using Quarkus. It utilizes SmallRye Reactive Messaging to build data streaming applications.
If you did the Kafka, you have realized that it’s the same code. The only difference is the connector configuration and the JSON mapping.